2x^2+2x=567

Simple and best practice solution for 2x^2+2x=567 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+2x=567 equation:



2x^2+2x=567
We move all terms to the left:
2x^2+2x-(567)=0
a = 2; b = 2; c = -567;
Δ = b2-4ac
Δ = 22-4·2·(-567)
Δ = 4540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4540}=\sqrt{4*1135}=\sqrt{4}*\sqrt{1135}=2\sqrt{1135}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1135}}{2*2}=\frac{-2-2\sqrt{1135}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1135}}{2*2}=\frac{-2+2\sqrt{1135}}{4} $

See similar equations:

| 15x-16x-3=14 | | -8x-7x-6=-3 | | 10x=2x−32 | | 5x-14-8x=4 | | 10=b/3+6 | | -(6n+7)+8=-19 | | 18x=-13x | | 5-2h=11 | | 1/3y-1=3/5 | | 9x-2=20x+5=40 | | 2=2t-6 | | x/2-13=16 | | 18x+8=-2x | | -4(-5-b)=1/3(b+38) | | 3h/h=18/3 | | 2(4-4x)=16-6x | | -3(k+72)=3 | | |7p-5|=|6p+18| | | -15=x/2-24 | | (11x-25)+(24x+10)=180 | | -2x+6=4x-21 | | C=a/(a+12)∙180 | | 1/9x+6=18 | | 3(x-64)=36 | | 8x−5=43 | | 2(x-2)-13=19-7x | | 3x-5x-2x+x=15 | | x-5=22-8(x+9) | | 10r^2=45-68r | | 0.75x+2=-4 | | 1+2a=9 | | X^4+9x2=0 |

Equations solver categories